LASERFERTIGUNG IN XXL

MATERIALS VALLEY WORKSHOP

<u>Stefan Kaierle</u> A. Springer, O. Seffer, R. Lahdo, J. Hermsdorf, A. Barroi Laser Zentrum Hannover, Germany

Hanau, 26. Februar 2015

materials valley

MOTIVATION

Sources: wikimedia.org, wordpress.com, sueddeutsche.de, Graebener Maschinentechnik, Meyerwerft

LZH IN THE SCIENCE PARK MARIENWERDER / HANNOVER

Founded in 1986

Staff / Turn over

- ~ 200 Full time staff
- ~ 100 Students
- ▶ ~ 16 Mill. EUR (2014)

Basic data

- Total area ~ 10,000 m²
- Shop floor ~ 1,400 m²
- Clean rooms 300 m²
- > 28 Labs

Supported by: Lower Saxony Ministry for Economics, Labour and Transport

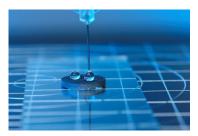
RESEARCH FOCUS

OPTICAL COMPONENTS AND SYSTEMS

- Optical Coating Technology
- Fibre Components
- Lasers

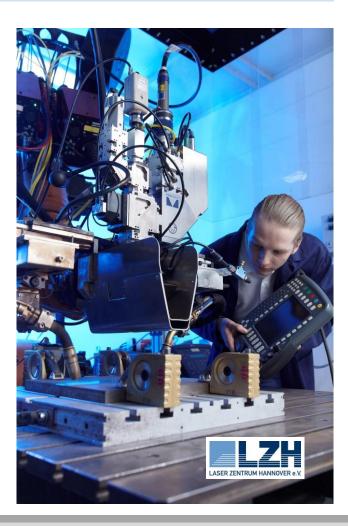
OPTICAL PRODUCTION TECHNOLOGIES

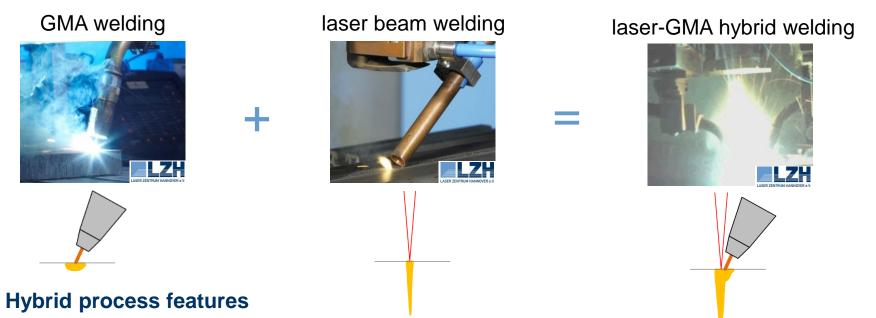
From nano to macro:


- Precise Surface Processing
- Generative Processes
- Joining and Cutting of Metals
- Processing of Non-Metals

BIOMEDICAL PHOTONICS

- Biomedical Engineering
- Laser Medicine
- Biophotonics




AGENDA

- Laser-GMA hybrid welding overview
- Hybrid welding by using a 16 kW disc laser
 - Steels up to 23 mm
 - Aluminum up to 12 mm
- Induction assisted laser-GMA hybrid welding
- Joining large-sized metal foam sandwiches for shipbuilding
- High Power Diode Laser Welding
- Laser assisted cladding

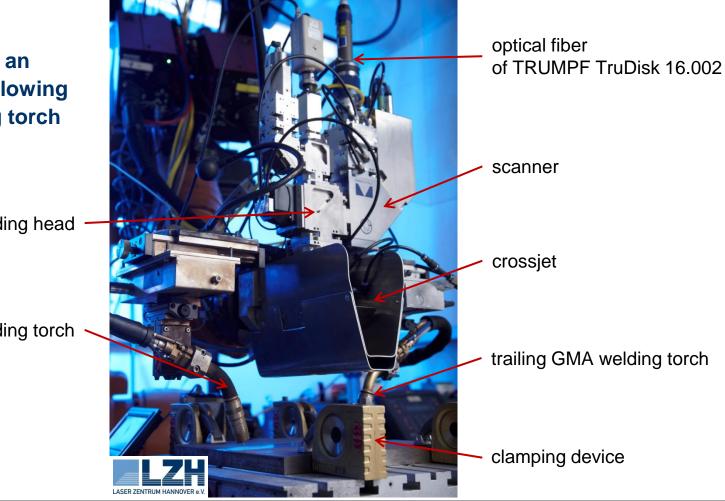
LASER-GMA HYBRID WELDING



- High welding speed
- Robustness against workpiece tolerances (gap bridgeability, vertical edge offset)
- Process stabilization by interaction between the individual processes
- Decrease of edge preparation and filler material consumption
- Joining within a single-pass (single-sided) process step

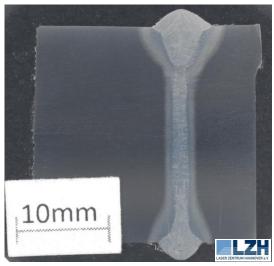
INVESTIGATED MATERIALS AT THE LZH UP TO NOW

- High-strength fine-grain structural steels
 - S1100QL (6 mm)
 - S1300QL (6 mm)
 - S700MC (10 mm)
 - L485MB (13 mm)
 - S690QL (15 mm)
 - S690QL (20 mm)
 - L485MB (23 mm)
 - L450MB (30 mm)
- Aluminum
 - EN AW-6082-T6 (12 mm)



TEST SETUP FOR LASER-GMA HYBRID WELDING

Process with an additional following GMA welding torch


laser welding head

following GMA welding torch

LASER-GMA HYBRID WELDING: STEEL


Cross section

Material parameters

Material grade: L485MB Wall thickness: 23 mm

Top layer

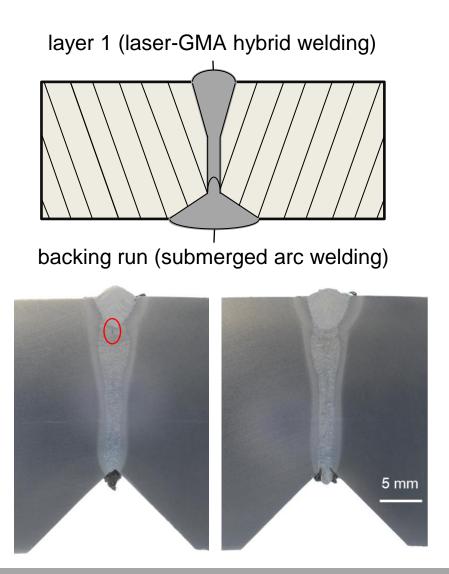
Weld root

Welding parameters

Welding speed:	1.8 m/min
Laser power:	16 kW
Arc power:	5.6 kW + 5.6 kW

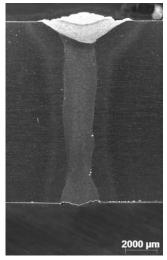
partial occurrence of hot cracks

LASER-GMA HYBRID WELDING: STEEL

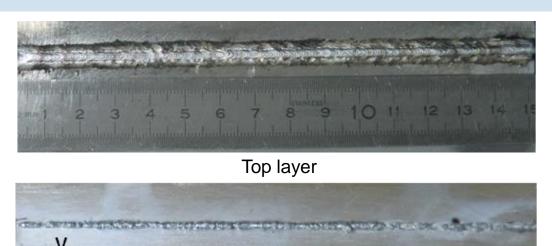

- material: L450MB
- workpiece dimensions
 - wall thickness = 30 mm
 - pipeline length = 1,500 mm
 - external diameter = 1,100 mm

LASER-GMA HYBRID WELDING: STEEL

- height of the hybrid welding seam:
 20 mm
- consistent seam appearance on a length of 1,500 mm
- high welding speeds of 1.6 m/min–2.0 m/min
- utilized laser beam power: 16 kW
- partial occurrence of cracks



LASER-GMA HYBRID WELDING: STEEL



LASER-MIG HYBRID WELDING: ALUMINUM

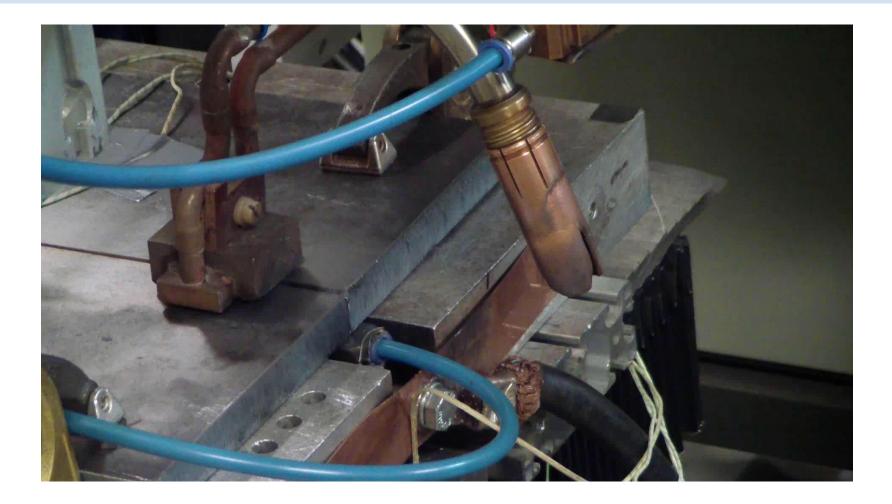
Weld root

Material parameters

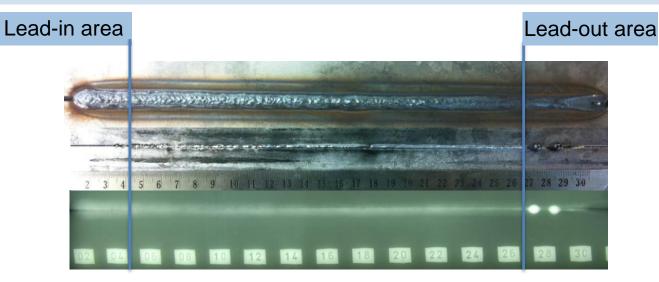
Welding parameters

- Material grade: EN AW-6082-T6 Welding speed: 6 m/min
- Wall thickness: 12 mm
 Laser power: 16 kW
 - Arc power: 2.7 kW + 1.8 kW
- meets the requirements for rating B according to EN ISO 13919-2:2001 and FprEN ISO 12932:2012.

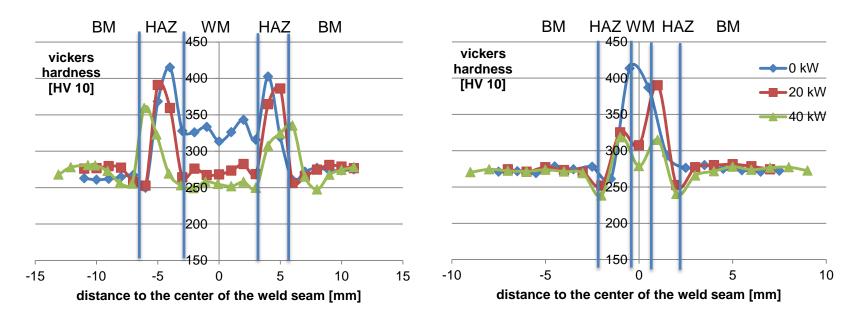
Laser-MAG hybrid welding of S690QL (t = 20 mm) with the use of an inductive preheating



Laser processing head


Process features

- Increase of the welding speed and the welding penetration depth
- Homogeneous mechanical properties in the vicinity of the welding seam
- Regulation of the hardness using variable induction power

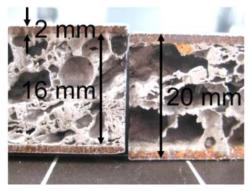

Material parameters			
Material grade	S690QL		
Wall thickness	20 mm		
Welding parameters			
Laser power	6 kW		
Welding speed	0,75 m/min		
Wire feed rate	14 m/min		
Edge preparation	20°Y9mm		
Filler wire material	CrNiMo		

- Secure root formation in the stable area (middle of the welding seam)
- Without weld imperfections (with exception of partial root concavity),
 without hot cracks
- Consistent seam appearance, but disadvantageous hardness profile
 Jusage of an inductive preheating

- Influence of the inductive power on the hardness of the welding seam
- Hardness series were determined 2 mm above and below the plate edges

- Reduction of the hardness by increasing inductive power
 - \rightarrow Hardness of 410 HV 10 (0 kW) to 350 HV 10 (40 kW) in the HAZ

Material parameters		
Material grade	S690QL	
Wall thickness	20 mm	



JOINING LARGE SCALE METAL FOAM SANDWICHES FOR SHIPBUILDING

Sandwiches:

2 mm steel + 16 mm aluminum foam + 2 mm steel

- The mixing of aluminum and steel has to be prevented (formation of intermetallic phases)
- Partial use of robots for joining large scale components

Steel-aluminum sandwich structure

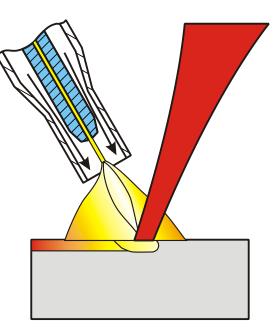
XXL- DEMONSTRATION PARTS

Demonstrators: gear unit foundation (3.6 t) and rudder structure

- 125 m laser welded seam, ca. 40 m (32 %) finished
- adequate planarity is required for Butt and T-joints
- laser welding is efficient practicable for ideal prepared panel edges
- weight reduction over 20 %

XXL-SURFACING IN HEAVY INDUSTRY

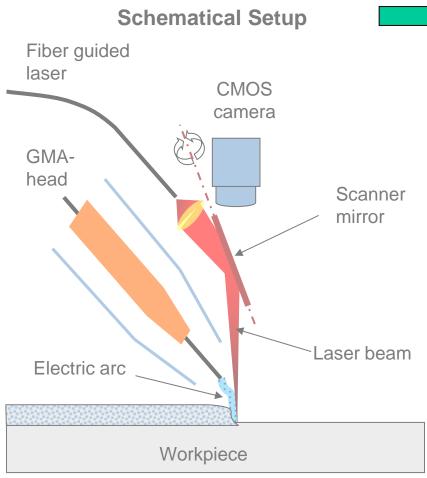
Source: http://www.terracompactorwheel.com

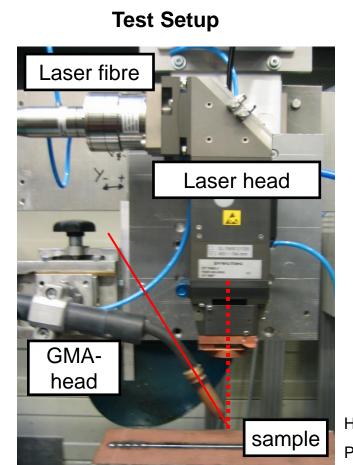

Source: Lincoln Electric

LASER-GUIDED AND STABILIZED WELDING

Properties

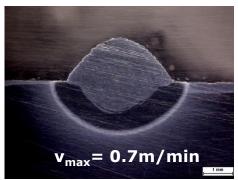
- Low laser intensities (~10⁴ W*cm⁻²)
- ~10-20% contribution to total power
- Only usage of the laser for guidance and stabilization
- Cost-effective laser systems
- Increased conductivity in the electric arc



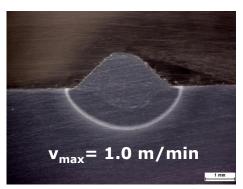

Possibilities

- No keyhole, no deep welding effect
- Different seam geometries may be welded
- > Higher feed rates possible
- Active positioning of the electrical arc, oscillation
- Decrease of thermally induced distortion

CONCEPT

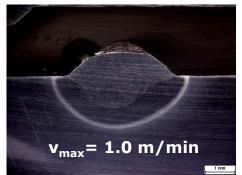


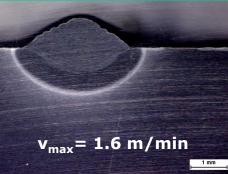
Head from Precitec



STABILIZATION OF GMA PROCESS

GMA reference weld


GMA+Nd:YAG-Laser


Process parameters:

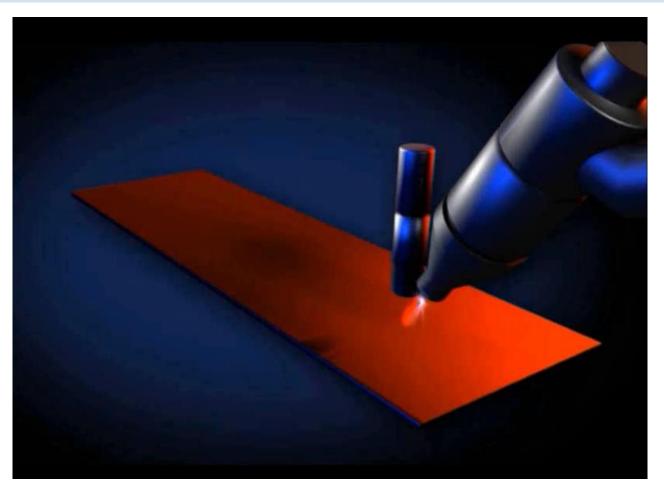
Wavelengths:	1064 / 808 / 811nm (cw)	
Beam diameters:	0.9mm / 2 mm / 1.3mm	
Focus positions:	+4mm / +7mm / +3mm	
Laser power:	400 / 360 / 250W	
Welding power:	1600 W	
Material:	Steel	
Gas:	Corgon	

GMA+Diode-laser 808nm

GMA+Diode-laser 811nm

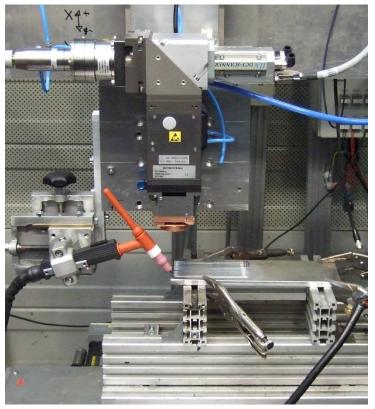
Result: 120% increase of the welding speed because of laser stabilization

LASER STABILIZED GMA BUTT WELDS


Laser stabilized butt weld:

-	Laser		
Stable GMA we	eld		Laser + GMA weld
	With L	/ithout laser aser	
	0.6 mm penetr with La		
Wavelength: Beam diameter: Focus position: Laser power:	811 nm (cw) 1.3 mm +3mm 380 W	Welding power: Material: Speed: Gas:	3690 W Steel 1.7 m/min Corgon

Result: Higher welding speed and deeper penetrations of butt welds due to laser stabilization


INTERACTION BETWEEN LASER RADIATION AND ELECTRIC ARC

GUIDING OF A TIG ELECTRIC ARC

Setup:

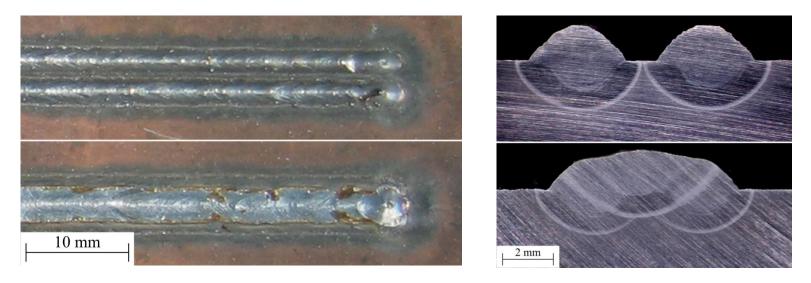
Process parameters:

Wavelength:	811 nm (cw)
Beam diameter:	ca.1.2 mm
Focus position:	+3mm
Laser power:	280 W
Welding power:	1050 W
Material:	Aluminium

3 Hz; 1.5m/min

3 Hz; 5 Hz; 0.5m/min

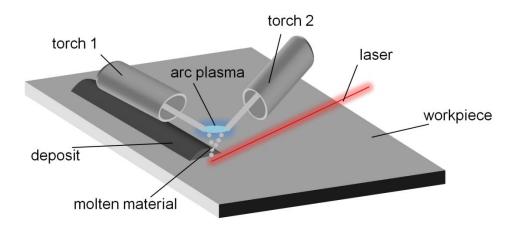
Result: Guiding of a TIG electric arc with low laser power is possible



LAYER BETWEEN TWO EXISTING LAYERS

Problem: Self positioning of the electric arc on the highest position

No contact to both layers


Beam diameter:	1 mm	Process speed	900/ 800mm/min
Focus position	+3mm		

Result: Placing a middle layer in between two weld clads is possible.

XXL-SURFACING

laser assisted double wire surfacing

Advantages:

- minimal heat input
- Iow dilution
- high deposition rate

XXL-SURFACING

welded surface, not machined

THANK YOU FOR YOUR ATTENTION

Contact: Dr. Stefan Kaierle s.kaierle@lzh.de +49 511 2788 370 Laser Zentrum Hannover, Germany

